Skin layer recovery of free-surface wakes: Relationship to surface renewal and dependence on heat flux and background turbulence

نویسندگان

  • C. J. Zappa
  • A. T. Jessup
  • Harry Yeh
چکیده

The thermal signatures of free-surface wakes observed in the open ocean show that the recovery of the cool skin layer is related to the degree of surface mixing and to ambient environmental conditions. Wakes produced by two surface-piercing cables of O(10 -2 m) in diameter a e analyzed using infrared imagery. Under low-wind-speed conditions when the swell and surface current were aligned, the wakes exhibited distinctive patchlike features of O(1 m) in diameter that were generated by the passage of individual waves. The time t, required by the skin layer to recover from these disturbances i compared to the surface-renewal timescale x used in heat and gas flux models. At low wind speeds, t, is comparable to x, but at moderate wind speeds the agreement is poor. The spatial and temporal variations in the skin temperature of these wakes are related to a wave Reynolds number used to characterize the strength of the disturbance due to the waves. The recovery process is characterized in terms of the restoring internal energy flux Jr which is proportional to both the initial thickness and the thermal recovery rate of the skin layer and was found to be directly related to the strength of the surface disruption. Comparison of the wake results with laboratory and other field measurements of breaking waves implies that Jr is also a strong fimction of the net heat flux and background turbulence, which relate directly to the existing environmental conditions uch as wind stress and sea state. Our results demonstrate that Jr may vary by several orders of magnitude, depending on the environmental conditions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Effects of Small-Scale Turbulence on Air–Sea Heat Flux

The air–sea exchange of heat is mainly controlled by the molecular diffusive layer adjacent to the surface. With an order of magnitude difference between the kinematic viscosity and thermal diffusivity of water, the thermal sublayer is embedded within its momentum analog: the viscous sublayer. Therefore, the surface heat exchange rates are greatly influenced by the surface kinematics and dynami...

متن کامل

Chemical reaction and radiation effects on MHD free convection flow through a porous medium bounded by a vertical surface with constant heat and mass flux

In the present paper, an analysis was carried out to investigate effects of radiation on a free convection flow bounded by a vertical surface embedded in a porous medium with constant suction velocity. It was under the influence of uniform magnetic field in the presence of a homogenous chemical reaction and viscous dissipation with constant heat and mass flux. The non-dimensional governing equa...

متن کامل

Boundary Layers and Heat Transfer on a Rotating Rough Disk

The study of flow and heat transfer over rotating circular disks is of great practical importance in understanding the cooling of rotatory machinery such as turbines, electric motors and design and manufacturing of computer disk drives. This paper presents an analysis of the flow and heat transfer over a heated infinite permeable rough disk. Boundary-layer approximation reduces the elliptic Nav...

متن کامل

Experimental Study for Investigating the Mechanism of Heat Transfer near the Critical Heat Flux in Nucleate Pool Boiling

Heat transfer coefficient in nucleate pool boiling near critical heat flux at least one orderhigher than the convectional heat transfer modes. In this paper, an experimental setup isdesigned and fabricated to investigate the mechanism of heat transfer from boiling surface tobulk liquid near critical heat flux. The images of pool boiling near the high heat flux regionreveals that the individual ...

متن کامل

MHD boundary layer heat and mass transfer of a chemically reacting Casson fluid over a permeable stretching surface with non-uniform heat source/‎sink

The heat and mass transfer analysis for MHD Casson fluid boundary layer flow over a permeable stretching sheet through a porous medium is carried out. The effect of non-uniform heat generation/absorption and chemical reaction are considered in heat and mass transport equations correspondingly. The heat transfer analysis has been carried out for two different heating processes namely; the prescr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007